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ARITHMETICAL STUDY 
OF A CERTAIN TERNARY RECURRENCE SEQUENCE 

AND RELATED QUESTIONS 

M. MIGNOTTE AND N. TZANAKIS 

ABSTRACT. The complete solution in (n, YI, Y2) E Z3 of the Diophantine 
equation 

bn = ?2Y1 3Y2 

is given, where (bn)nEz is Berstel's recurrence sequence defined by 

bo = bl = 0, b2 = 1, bn+3 = 2bn+2- 4bn+I + 4bn. 

1. INTRODUCTION 

Let (un)nEz be a linear recurrence sequence in Q whose characteristic poly- 
nomial has at least two distinct roots and suppose that this sequence is non- 
degenerate, i.e., the ratio of any distinct roots of the characteristic polynomial 
is not a root of unity. Let c be an integer which is either a constant or an 
S-integer (i.e., an integer whose prime divisors belong to a finite fixed set of 
primes). Under these assumptions, the equation Un = c (in the unknown n) 
has at most finitely many solutions; see, for example, Corollary 3 of J. H. Evertse 
[3]. The problem of the explicit computation of these solutions is a difficult one, 
and in a previous paper of ours [6] we propose a general practical method for 
the explicit solution of equations as above. The purpose of our present paper 
is to give an interesting application of our method [6] to the equation 

(1) bn = +2r 3s 

where (bn)nEz is Berstel's ternary recurrence sequence defined by 

bo = b= 0, b2 = 1, bn+3 = 2bn+2- 4bn+l + 4bn. 

We quote from the introduction of our paper [6]: "Among ternary linear re- 
currence sequences, it seems that Berstel's sequence...plays a very special role. 
Firstly, it is the only known example of a nondegenerate ternary linear recur- 
rence sequence which has six zeros (by definition, a nondegenerate linear recur- 
rence sequence has only finitely many zeros). It was proved in [4] that it contains 
exactly six zeros. F. Beukers has just proved [in the meantime, this has appeared 
in [ 1 ]] that six is the right upper bound for the number of zeros of nondegenerate 
ternary recurrence sequences of integers. Secondly, Berstel's sequence contains 
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many repetitions; indeed it was proved in [5] that the equation bm = ?b, for 
rational integers m, n E Z has exactly 21 solutions (m, n) with m < n, and 
these solutions were explicitly computed. For the problem studied here, i.e., 
the equation u, = +2r3S, it seems again that Berstel's sequence has remarkable 
properties: we can prove that there are exactly 44 solutions (n, r, s)." In our 
aforementioned paper we announce without proof the complete solution of (1) 
(see the theorem in ?IV of [6]). Here we will give all the details of the solution. 
In particular, we hope to make clear, by means of the concrete example which 
we study, the part of our method described only in general terms in the remark 
of ?III of [6]. 

2. PRELIMINARIES 

We work in the field Q(0), where 03 - 202 + 40 - 4 = 0. In this field, 
X= 02/2 is a prime element and (2) = 73. More precisely, 2 = 7r3e, where 
e= 3 0 + 02 is a unit and 0 = 7r2u, where # = 1 + 02/2 is a unit ( 1, 0, 02/2 
is an integral basis in the field Q(0)). If 0(1), 0(2), 0(3) are the conjugates of 
0 in C (exactly one is real), then it is easy to see that 

(i)" 0(3) _- 0(2) a(3) - 0(1) 0(2) - 0(1) 
bn = ai0(') , where a= I ,a = 4 a, 

i=1 4XFT[ -~~~1- 4VPTI 
I 

a3 = 
-,'- 

We write n = 3m + j, with j E {0, 1, 2} . Then 
3 3 

b aE ,(i)6m+2j 9(i)3m+j - o (7f(i)2A(i))j(7,(i))2m,(i)3m 

i=1 1=1 
3 

= a(7(i)2 A~)j2()l2A 3m 

I=1 

3 3 
= 22m E ai(7f(i)2 j(i))I(,(i)3e(i)-2)m - 22m E 

i=1 i-l 

where co =u3-2 and cw3 + w02 + wJ - 1 = 0. 

Thus, for j = 1, 2, b3m+j = 22mUjm, where ujm is given by the formula 

3 

(2) Ujm = E ai0(i)j)(i)m 
i=1 

and 
3 

b3m- 22m-lUOm, where uOm = :2aio(i) , 
i=1 

and in all the three cases, Uj,m+3 =Uj,m+2 - Uj,m+I + Uj,m - 
It is easy to see that (Ujo, ujI, uj2) = (0, 1, 0), ( 0,0, 1), (1, -1, 1) ac- 

cording as j = 0, 1, 2, respectively. In the following sections we shall solve 
the equations 

(3) ujm = 2 r3s 

for each value j E {0, 1, 2} separately. The advantage of working with the 
sequence (ujm) instead of (bn) is that the first one assumes only integral values, 
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even for negative index n. For simplicity in our notations we will omit the 
index j, but in the beginning of each section it will be clear which sequence we 
study. 

In the present paper we will often apply Theorem 1 of ?II of [6]. We describe 
its use in our situation: Let p be a prime 5# 2, 11 (these are the primes dividing 
the discriminant of the minimal polynomial of w)). Choose a positive integer 
S such that cos = A (modp) for some A E Z. Suppose, moreover, that A 
has been chosen in such a way that the orders of A modulo p and p2 have 
the same value R. Then we have the following result (cf. Theorem 1, ?11 of 
[6]): 
Theorem 1. Let the rational integer c be such that either c 0 0 (modp) or 
c = 0. Let 39 be a complete system of residues modulo S, and X# a subset of 
3.9 satisfying the following conditions: 

(i) um = c for every m E A, 
(ii) if n E39 and un=cAr (modp) for some r E {O1, ... R - 1}, then 

n e A#, 
(iii) um+s X Aum (modp2) for every m E X. 

Then un = c implies n E X. 

In the beginning of ?4 we will use another result from [6] (Theorem 2 of [6]): 

Theorem 2. Let p, co, and A be as in Theorem 1 and XV= {n E Z: un = O} 
Let q be a prime # p and v a positive integer such that the following condition 
is satisfied: 

um r 0 (modqv) =v 3n E X such that n -- m (modS). 

Then um rn 0 (mod qv) implies that p divides um . 

Remark. More often in this paper we will use, instead of Theorem 2, the fol- 
lowing trick (cf. with the remark of ?III of [6]): Let p be a prime. Then (un) 
is periodic modulo p, with period P, say. Next, consider a prime q $ p . The 
sequence (un) is periodic modulo qv for any positive integer v, with period 
length Q, say (depending on v); therefore, a relation of the form un 0 
(mod qv) restricts the values of the index n modulo Q, hence, if gcd(P, Q) 
is not "very small", restricts the values of n modulo P to only "a few" possi- 
bilities, say nI, ... , nk (modP). With a convenient choice of the prime p, 
it can happen that p divides un1 for every j = 1, ... , k, and in this case we 
get the same conclusion as in Theorem 2, i.e., 

0n _ 0 (mod qv) =* n _ 0 (modp). 

Thus, if it is known a priori that un is not divisible by p, we conclude that a 
power of q can divide un only if it is lower than qv. 

3. THE CASE j = 0 

Here we have 

Uo = O. U1 = 1, u2=O Um+3 =-Um+2-Um+1 + Um- 

We apply first the remark at the end of ?2, with q = 2, v = 3, Q = 16, 
p = 7, and P = 48 to conclude that if 8 divides um, then 7 also divides um. 
Therefore, we can assume 0 < r < 2. 
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To find an upper bound for s using Theorem 2 or the above remark seems 
difficult in this case. Therefore, we work as follows, distinguishing three cases. 
First note that for s > 2 one has necessarily m- 0, 2 (mod 13). 

(i) m M 0 (mod 13) and s > 7. In this case, 

um - 0 (mod37) ? m - 0 (mod 13 - 81) m =- 0, 81 (mod 162). 

Since m 0 (mod 162) implies that 163 divides Um, we have m _ 81 (mod 
162). 

(ii) m 2 (mod 13) and s > 6. In this case an argument similar to the 
previous one shows that we must have m - 83 (mod 162). 

(iii) 0 < s < 6. This case can be treated as ?II of [6] suggests (see below). 
First we exclude the first two cases. To simplify notations, we shall write 

(a, b) -- (a', b') mod(m, iM2) 

instead of the two relations 

a _ a' (mod m I) & b=bY (mod M2). 

Note that in both cases (i) and (ii) the index m is odd, which implies that 
Um is also odd, and therefore r = 0. Moreover, we have 

In case (i), 

m i 81 (mod 162)=A Umr 15 (mod 163) 
m 3S ?15 (mod163) i~ s -22 (mod81); 

therefore 

(4) (m, s) _- (9, 4) mod(1l8, 9). 
We have the table 

m 9 27 45 63 81 99 117 135 153 171 189 mod 198 
Um -3 21 97 -80 -41 91 10 -92 79 -8 -74 mod 199 
s 100 143 131 67 68 116 461 33 I' 61 21 18 mod 199 

The only pair (m, s) in this table which satisfies (4) is (63, 67) mod(l 98, 99). 
On the other hand, m - 63 (mod 198) implies m - 63, 129 (mod 132) 

and, making use of the auxiliary prime 397 = 3 132 + 1, we see that 

mi 63 (mod 132) = Um -1 56 (mod 397) * 3S 1 56 (mod 397) 
s * ind 3 = ind(? 1 56) (mod 396) = s _ 2 (mod 9), 

which contradicts s -67 (mod 99). 
If m- 129 (mod 132), we get analogously s 1 (mod 9), which is again 

a contradiction. 
In case (ii) we work as in case (i) to obtain first 

(5) (m, s) _(II, 8) mod (18, 9), 
and then we construct a table relative to the auxiliary prime 199, from which 
we see that the only pair which satisfies (5) is 

(6) (m, s)E-(155, 80) mod (198, 99). 
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In particular, m = 23, 89 (mod 132) and, as before, we make use of the 
auxiliary prime 397. If m _ 23 (mod 132), we easily get s = 0 (mod 9), 
which contradicts (6), and if m _ 89 (mod 132), then s-= 10 (mod 11), 
which again contradicts (6) (note that 396 is divisible by 99). 

Now that we have excluded cases (i) and (ii), we are left with (iii); i.e., we 
have to solve 

(7) m=2r 3s, 0 < r < 2, 0 < s < 6. 

We applied Theorem 1 of [6] with p E {47, 53, 103, 163, 199, 397}, using a 
simple computer program. The values of the various parameters and a summary 
of the application of that theorem to the solution of (7) are given, respectively, 
in Tables I and II. 

TABLE I 

P S A R 
47 46 1 1 
53 52 1 1 
103 17 56 3 
163 54 -59 3 
199 66 -93 3 
397 132 1 1 

TABLE II. urn =2r3s, O<r<2, O<s< 6 

Um m 
. 

1 -1 1, -1 3, 5 53 103 
2 -2 4,-2 6, 12 53 53 
3 -3 -3 9 199 103 
4 -4 0 8 47 53 
6 -6 -4 0 53 47 
9 -9 15 0 163 199 

12 -12 10 0 53 47 
18 -18 0 0 47 47 
27 -27 13 0 103 53 
36 -36 0 0 47 53 
54 -54 0 0 47 47 
81 -81 0 0 53 47 

108 -108- 0 0 47 47 
162 -162 0 0 103 103 
243 -243 0 0 47 47 
324 -324 0 0 103 53 
486 -486 0 0 47 103 
729 -729 0 0 47 47 
972 -972 0 0 47 47 

1458 -1458 0 0 103 53 
2916 -2916 0 0 103 103 
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The symbol 0 in the second main column means that the congruence Um n c 
(modp), where c and p are the numbers of the first and third main column 
on the same row, respectively, is impossible. 

4. THE CASES j = 1 AND j = 2 

Here we have 

j=1: u0=O, U= 0, U2= 1, Um+3=-Um+2-Um+1+Unm, 

j=2: uo= 1, ul=-1, u2= 1, Um+3U=-Um+2-Um+1+Urm. 

This section is mainly devoted to the case j = 1. The case j = 2 is very easy, 
and its solution is given at the end of the section. 

The case j = 1 . 
First we solve the equation 

(8) Um = ?3S* 

It is easily checked that 

UMr_ 0 (mod38) m-0, 1, 4, 17 (mod34 13). 

In particular, if s > 8, either m _ 0, 1, 4, 17 or m _ 81, 82, 85, 98 
(mod 162). In the first case, the hypotheses of Theorem 2 of [61 are satis- 
fiedwith q= 3, p= 163, S= 162, A= 1, and v =8, andweconcludethat 
163 divides Um, which contradicts (8). Thus, we are left with the following 
cases: 

(i) s > 8 and m =_ 81, 82, 85, 98 (mod 162), 
(ii) s < 7. 

We show that (i) is impossible, as we did in (i) and (ii) when I = 0. We have, 

m--81 (mod 162) = aUr-61 (mod 163) 
* 3S ?61 (mod 163) =} s 12 (mod81). 

Analogously, 

m 82 (mod 162) is 59 (mod 81), 
m 85 (mod 162) *s 38 (mod81), 
m 98 (mod 162)* s- 1 (mod 81). 

Therefore, only the following cases are possible: 

(m, s) _ (9, 3), (10, 5), (13, 2), (8, 1) mod(18, 9). 

Then, we work modulo 199, exactly as we did immediately after (4), to conclude 
that the fourth case above is impossible and, corresponding to the first three 
cases, we have respectively 

(9) (m, s)=_ (9, 21),(171, 21) mod (198, 99), 
(10) (m, s) (190, 5) mod (198, 99), 
(I11) (m, s) (I 57, 92) mod (I198, 99). 

In case (9) we have m 9, 171, 207, 369 (mod 396), which implies 

(12) m-9,39,75,105 (modl32). 
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Analogously, in cases (10) and (1 1) we have, respectively, 

(13) m-58, 124 (modl32), 
(14) m 25,91 (modl32). 

Then we work modulo 397 to show that each pair of the relations (9) & (12), 
(10) & (13), and (11) & (14), is either contradictory or includes an impossible 
relation. We give some typical examples (note that the order of 3 modulo 397 
is 198 and that -1 =- 399 (mod 397): 

m _ 9 (mod 132) = Ur n -8 (mod 397) =} 35 ?8 (mod 397) 

and the last relation is impossible; 

m - 75 (mod 132) Urn -- 136 (mod 397) = 35 _136 (mod 397) 

s- 114 (mod198) =s 6 (mod9), 

while (9) implies that s 3 (mod 9); 

m _ 91 (mod 132) u* Ur- 179 (mod 397) * 3S ?179 (mod 397) 

s 47 (mod198) =. s _ 3 (modlI), 

while from (11) we must have s -4 (mod 11). All the remaining cases are 
treated analogously. 

Now we are left with case (ii) of (8). We deal with it as we did with equation 
(7), and we summarize its solution in Table III. 

The equation 

(15) Um=n 2r 

is easier to solve than (8). First we observe that 

(16) U M-0 (mod24) i> Umr 0 (mod7), 

which implies that r < 3 in (15), and this equation's solution is summarized 
in Table IV. 

TABLE III. um = ?3s, O < s < 7 

1 -1 -2, -12,7 3 47 47 
3 -3 0 6 47 397 
9 -9 14 0 163 103 

27 -27 0 -0 103 103 
81 -81 30, -9 z 53 53 

243 -243 0 0 53 53 
729 -729 0 0 53 47 

2187 -2187 0 0 47 47 

TABLE IV. um = ?2r, < r < 3 

2 -2 S-3 53 53 
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Finally, we are left with the equation 

(17) um?=2r'3s, 1 <r<3,s 1. 

A main difficulty lies in the problem of finding an upper bound for the exponent 
s . In ?6, we discuss an alternative approach to the solution of (17). We observe 
the following fact: 

ur = 0 (mod9) m -0, 1, 4 (mod 13) 
m 0, 1, 4, 13, 14, 17, 26, 27, 30, 39, 40, 43 (mod52). 

The values m 0, 1, 4, 17 (mod 52) are rejected because, for such values, 
53 divides urnm. On the other hand, from (17), Urn is even, which implies that 
m -0, 1 (mod 4). Thus, we are left with 

(18) m- 13,40 (mod52). 

Also, if 35 divides um, then m--O, 1, 4, 17 (mod 39) and the values m_ 
4, 17 (mod 39) are rejected in view of (18). Finally, if 36 divides urn and 
m-- 0, 1 (mod 39), then m-= 0, 1 (mod 133 34). Therefore, in order to solve 
(16), we distinguish two cases: 

(i) s > 6, and consequently m = 0, 1 (mod 1 3 . 8 1), 
(ii) s < 5. 
First we exclude case (i), working modulo 163, 199, and 397, successively. 

Notice that in case (i) we have, in particular, m -81, 82 (mod 162), as we 
noticed in the resolution of equation (8). 

The number 3 is a primitive root for the modulus 163; therefore, 

m-81 (mod 162) Xur m--61 (mod 163) = 2r3s ?61 (mod 163) 

i377r+s=-?61 (mod 163) i77r + s _ 12 (mod 8l). 

From this last congruence we see that 

s =- 7, 2, 6 (mod 9) according as r = 1, 2, 3, respectively. 

Analogously, we find that if m _ 82 (mod 162), then 

s _ 0, 4, 8 (mod 9) according as r = 1, 2, 3, respectively. 

Thus, we have the following three cases: 

(19) r= and (m, s) (9, 7), (1O, 0) mod(18, 9), 
(20) r= 2 and (m, s) (9, 2), (10, 4) mod(18, 9), 
(21) r= 3 and (m, s) (9, 6), (10, 8) mod(18, 9). 

Next we work modulo 199. Equation (17) implies urn = 37r+s (mod 199). 
We have the following table when m -9 (mod 18): 

m 9 27 45 63 81 99 117 135 153 171 189 mod 198 
Um -8 -43 63 13 -7 86 -38 -92 -47 -8 81 mod 199 

7r + s 21 88 45 73 43 85 62 33 76 21 4 mod 99 
7r+s 3 7 0 1 7 4 8 6 4 3 4 mod9 
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When m -10 (mod 18), we have the table 

m 10 28 46 64 82 100 118 136 154 172 190 mod 198 
UM 5 64 34 -93 -34 5 48 0 -73 0 44 mod 199 

7r+s 39 42 31 66 31 39 29 52 5 mod 99 
7r+s 3 6 4 3 4 3 2 * 7 * 5 mod9 

(an asterisque means that, modulo 199, the value um is not a power of 3). 
From the above tables it is easy to check the following facts: 

(22) relation (19) is possible only if m 154 (mod 198), 
(23) relation (20) is possible only if m 27, 81 (mod 198), 
(24) relation (21) is possible only if m 45, 118 (mod 198). 

The three relations (22), (23), and (24) imply respectively 

m _ 22, 88; 27, 93, 15, 81; 45, 111, 52, 118 (mod 132). 

Since um is even (by (17)), we must have m = 0 1(mod 4), and conse- 
quently the following cases are left: 

(25) r= 1 and (m, s) (88, 0) mod(132, 9), 
(26) r= 2 and (m, s) (93, 2), (81, 2) mod(132, 9), 
(27) r= 3 and (m, s) (45, 6), (52, 8) mod(132, 9). 

Finally we work modulo 397. Relation (17) implies 

t * ind(-1) + r * ind(2) + s . ind(3) -ind(um) (mod396), 

where t E {0, 1}. Since ind(-1) - ind(2) _ 0 (mod9) and ind(3) 2 
(mod 9), we must have 

(28) 2s=ind(um) (mod9). 

If (25) is true, then we have the following implications: 

m _ 88 (mod 132) um Ur 33 (mod 397) ?* ind(um) _ 322 (mod 396) 
? ind(um) _ 7 (mod9) ? s - 8 (mod9) 

(in view also of (28)), and this contradicts (25). In an analogous way we prove 
the impossibility of (26) and (27), and this shows that case (i) (i.e., s > 6) is 
impossible. 

It remains therefore to solve the equation um = ?2r3s with 1 < r < 3 and 
1 < s < 5. The usual table corresponding to this equation is found in Table V. 

The case j = 2. This is the easiest case. It is obvious that um is odd 
for every m; therefore, we have to solve the equation Um = ?3s. It is easily 
checked that um is never divisible by 27. Therefore, 0 < s < 2. The usual 
table of solutions is given in Table VI. 
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TABLE V. (j = 1)um = ?2r3s, 1 < r < 3, 0 < s < 3 

Urn m p 
6 -6 0 0 47 47 

12 -12 0 0 1 47 47 
18 -18 13 0 53 53 
24 -24 -7 0 53 47 
36 -36 0 0 47 53 
54 -54 0 0 103 47 
72 -72 0 0 47 47 

108 -108 0 0 199 47 
162 -162 0 0 47 47 
216 -216 0 0 47 47 
324 -324 0 0 47 103 
486 -486 0 0 47 47 
648 -648 0 0 47 47 
972 -972 _0 47 47 

1944 -1944 0 0 47 47 

TABLE VI. (I= )um =A3s, 0 < s < 2 

Umr m P 
1 -1 -2,-1,0,2,3,6 1,9 103 47 
3 -3 -3, 5 4 4 47 103 
9 -9 -5, 8 0 47 K 47I 

5. THE FINAL RESULT 

The results of all the previous sections are summarized as follows: 

Theorem 3. The only solutions (n, Y1 , Y2) of the equation 

bn = ?2y' * 3Y2, n e Z. 

where bo = = 0, b2 = 1, bn+3 = 2bn+2 - 4bn+l + 4bn, are the 44 ones listed 
below. 

n -26 -20 -13 -12 -11 -9 -8 -7 -6 -5 -4 
bn 2-1834 2-113 2-1032 2-83 2-6 2-3 2 2-63 2- 2- 2- 
n -3 -2 -1 2 3 5 7 8 9 10 11 
bn 2-3 2-2 2-2 1 2 _22 24 24 -25 -26 26 
n 12 14 15 16 17 181 19 20 22 24 25 
bn 28 -283 -29 211 2103 -212 -2123 212 214 -217 218 
n 26 27 28 29 30 36 39 40 43 45 91 
bn 21632 -2173 -221 -218 2213 -224 22533 22732 22832 22932 26034 
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6. AN ALTERNATIVE APPROACH TO (17) 

In this section we indicate how linear forms in logarithms of algebraic num- 
bers, in combination with a recent computational technique, can be applied to 
the solution of equation (17). 

It is not difficult to prove the following (we omit the proof): 

Lemma. If in equation (17) we have s > 5, then m = 13 . 3V * M + j, where 
jE {0, 1, 4, 17} and v > s - 4. 

This result will be applied below. In the sequel we will assume that s > 5. 
We number the conjugates of 6 as follows: 

0(1) - 0.352201129 + i * 1.721433237 , 9(2) = Q(1), 0(3) 
_ 1.295597743. 

Then Iw0(1) - I0(2)I > 1 and Iwco(') < 1. From (1) we have 

3 3 

Ur = E C(i)(i) W(i)m - Efl(i) (i)m 

i=1 i=1 

where 6(i) - ai)0(i), for i = 1, 2, 3. 
Let m > 17. Then um #A 0, and consequently lumI > 1. Also, Ifl(3)w0(3)mI < 

5.8 * 10-6, and therefore 

1 < IUMI < ? I21)w1om + A()(2)m I + (3) + (3 

< Ifl,1cw01m + fl(2)w)(2)mI + 5.8. 10-6. 

Then, 

IumI > 0.999994. Ifl8))c(w)m + f(2),w(2)mI 

= 0.999994. l(1)w(1)mI ( ( ). - 1 

> 0.259988 ( ) _ / ) Co(2) -1m 

We put 

(2 o (\)( 2) M LO ( (2) )+ m ( LOg (2) + k * LOg(- 1), 

where Log denotes the principal branch of the logarithmic function and k is 

some integer with IkI < m + 1. Then 

(29) IumI > 0.259988. 1w(l)Im. leA -1 

If leA- I I<0.5,then 

(30) 1 eA _11 > 0.98. JAI > 0. 

We can now apply the theory of linear forms in logarithms of algebraic num- 

bers (see [7]and [2]) to find a lower bound for JAI as follows: By Waldschmidt's 

theorem [7] we found 

JAI > exp{-7.1669. 1025 * (Logim + 3.991)}. 
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Therefore, 

(31) luml > 0.259988 *1.3562m * exp{-7.1669. 1025 * (Logm + 3.991)}. 

On the other hand, from (17) and the lemma, we have 
< Logm-Log 3 <2.335 . Log m, 

so that 

(32) lUmi < 8 32.335Logrn+4 

Combine the last inequality with (29) to see that 

(33) m < 5.52* 1027, 
from which we can find an upper bound for s. Indeed, in view of (32), 

3S < IUrI ? 8 . 32.335Logrm+4 

from which, in combination with (31), we get s < 155. 
If m < 0, things are much easier: Let us put m = -n, where we may 

suppose that n > 2. Then, from the equality 

- =I3(l)(wX(l)-')r + I(2) (w(2) -)nm + fl(3)((w(3)m)r 

it is easy to see that 

(34) IurnI > 0.751,I (3)11i(3)- Irm> 0.252171. 1.839287m. 

On the other hand, from m - ] = 13*3v * M, on putting M = -N, N > 0, we 
get the relation m+ j = 13 v. Y *N > 13 3v and 13.3v < m+ 17, from which 

>< Logm <0.91024*Logm. 
-Log 3 

Then, in view of the lemma, 

luml < 8 . 35 < 8 . 3v+4 < 8 . 30.91024Logrm+4 

and this relation, combined with (34), gives m < 18. Thus, if m < 0, we have 
to check only the values -17 < m < -1, and this is done trivially. 

The case m > 0 (in fact, we have supposed that m > 17) requires much 
more effort; it is not a realistic task to check um for all m < 5.52. 1027 (cf. 
(33)); nor is it realistic to solve all equations um = 2r * 3S for 0 < r < 3 and 
0 < s < 155 . Therefore, we need a practical method for reducing the very large 
upper bound for m. Note first that in (29) we may suppose leA - 11 < 0.5. 
Indeed, if this is not the case, then (32) and (29) imply 

8 . 32.335 Logtm+4 > 0. 12994 * 1.356204m, 

which gives m < 63. Then, by the lemma, the only possible values for m are 
39, 40, 43, and 56, and none of them is a solution of (17). Thus, leA - II < 0.5 
holds, which implies (30). This, in turn, in combination with (32) implies 

JAI < 2543.291 . 13.00404Logm * 1.356203-m. 

If m > 331, then 
JAI < 2543.29* 1.356203-m/2, 

and we have to solve the last inequality under the restrictions JAI > 0 and 17 < 
m < 5.52. 1027. At this point, we can apply the technique of B. M. M. de Weger 
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(see ??7B and 7C of [8]), which reduces the upper bound of m logarithmically. 
This requires, however, a considerable amount of computations. After this, 
only the "small" values of m will remain to be checked, and this can be done 
easily, provided we have a computer program for doing long-integer arithmetic. 
Indeed, in the range m < 1000, say, we have to check (in view of the lemma) 
only the values which are congruent to 0, 1, 4, 17 modulo 39, i.e., only about 
100 values, to see which of them satisfy (17). 
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